Skip to content

[Superseded]

Scoped verbs (_if, _at, _all) have been superseded by the use of if_all() or if_any() in an existing verb. See vignette("colwise") for details.

These scoped filtering verbs apply a predicate expression to a selection of variables. The predicate expression should be quoted with all_vars() or any_vars() and should mention the pronoun . to refer to variables.

Usage

filter_all(.tbl, .vars_predicate, .preserve = FALSE)

filter_if(.tbl, .predicate, .vars_predicate, .preserve = FALSE)

filter_at(.tbl, .vars, .vars_predicate, .preserve = FALSE)

Arguments

.tbl

A tbl object.

.vars_predicate

A quoted predicate expression as returned by all_vars() or any_vars().

Can also be a function or purrr-like formula. In this case, the intersection of the results is taken by default and there's currently no way to request the union.

.preserve

when FALSE (the default), the grouping structure is recalculated based on the resulting data, otherwise it is kept as is.

.predicate

A predicate function to be applied to the columns or a logical vector. The variables for which .predicate is or returns TRUE are selected. This argument is passed to rlang::as_function() and thus supports quosure-style lambda functions and strings representing function names.

.vars

A list of columns generated by vars(), a character vector of column names, a numeric vector of column positions, or NULL.

Grouping variables

The grouping variables that are part of the selection are taken into account to determine filtered rows.

Examples

# While filter() accepts expressions with specific variables, the
# scoped filter verbs take an expression with the pronoun `.` and
# replicate it over all variables. This expression should be quoted
# with all_vars() or any_vars():
all_vars(is.na(.))
#> <predicate intersection>
#> <quosure>
#> expr: ^is.na(.)
#> env:  0x55a40cbee208
any_vars(is.na(.))
#> <predicate union>
#> <quosure>
#> expr: ^is.na(.)
#> env:  0x55a40cbee208


# You can take the intersection of the replicated expressions:
filter_all(mtcars, all_vars(. > 150))
#>  [1] mpg  cyl  disp hp   drat wt   qsec vs   am   gear carb
#> <0 rows> (or 0-length row.names)
# ->
filter(mtcars, if_all(everything(), ~ .x > 150))
#>  [1] mpg  cyl  disp hp   drat wt   qsec vs   am   gear carb
#> <0 rows> (or 0-length row.names)

# Or the union:
filter_all(mtcars, any_vars(. > 150))
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
# ->
filter(mtcars, if_any(everything(), ~ . > 150))
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8


# You can vary the selection of columns on which to apply the
# predicate. filter_at() takes a vars() specification:
filter_at(mtcars, vars(starts_with("d")), any_vars((. %% 2) == 0))
#>                      mpg cyl disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4           21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag       21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
#> Datsun 710          22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
#> Hornet 4 Drive      21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
#> Hornet Sportabout   18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
#> Duster 360          14.3   8  360 245 3.21 3.570 15.84  0  0    3    4
#> Cadillac Fleetwood  10.4   8  472 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental 10.4   8  460 215 3.00 5.424 17.82  0  0    3    4
#> Chrysler Imperial   14.7   8  440 230 3.23 5.345 17.42  0  0    3    4
#> Dodge Challenger    15.5   8  318 150 2.76 3.520 16.87  0  0    3    2
#> AMC Javelin         15.2   8  304 150 3.15 3.435 17.30  0  0    3    2
#> Camaro Z28          13.3   8  350 245 3.73 3.840 15.41  0  0    3    4
#> Pontiac Firebird    19.2   8  400 175 3.08 3.845 17.05  0  0    3    2
# ->
filter(mtcars, if_any(starts_with("d"), ~ (.x %% 2) == 0))
#>                      mpg cyl disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4           21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag       21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
#> Datsun 710          22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
#> Hornet 4 Drive      21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
#> Hornet Sportabout   18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
#> Duster 360          14.3   8  360 245 3.21 3.570 15.84  0  0    3    4
#> Cadillac Fleetwood  10.4   8  472 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental 10.4   8  460 215 3.00 5.424 17.82  0  0    3    4
#> Chrysler Imperial   14.7   8  440 230 3.23 5.345 17.42  0  0    3    4
#> Dodge Challenger    15.5   8  318 150 2.76 3.520 16.87  0  0    3    2
#> AMC Javelin         15.2   8  304 150 3.15 3.435 17.30  0  0    3    2
#> Camaro Z28          13.3   8  350 245 3.73 3.840 15.41  0  0    3    4
#> Pontiac Firebird    19.2   8  400 175 3.08 3.845 17.05  0  0    3    2

# And filter_if() selects variables with a predicate function:
filter_if(mtcars, ~ all(floor(.) == .), all_vars(. != 0))
#>                 mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Datsun 710     22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Fiat 128       32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Honda Civic    30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Toyota Corolla 33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Fiat X1-9      27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Lotus Europa   30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Volvo 142E     21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
# ->
is_int <- function(x) all(floor(x) == x)
filter(mtcars, if_all(where(is_int), ~ .x != 0))
#>                 mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Datsun 710     22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Fiat 128       32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Honda Civic    30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Toyota Corolla 33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Fiat X1-9      27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Lotus Europa   30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Volvo 142E     21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2