Mutating joins add columns from y to x, matching observations based on
the keys. There are four mutating joins: the inner join, and the three outer
joins.
Inner join
An inner_join() only keeps observations from x that have a matching key
in y.
The most important property of an inner join is that unmatched rows in either input are not included in the result. This means that generally inner joins are not appropriate in most analyses, because it is too easy to lose observations.
Usage
inner_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL
)
# S3 method for class 'data.frame'
inner_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL,
na_matches = c("na", "never"),
multiple = "all",
unmatched = "drop",
relationship = NULL
)
left_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL
)
# S3 method for class 'data.frame'
left_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL,
na_matches = c("na", "never"),
multiple = "all",
unmatched = "drop",
relationship = NULL
)
right_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL
)
# S3 method for class 'data.frame'
right_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL,
na_matches = c("na", "never"),
multiple = "all",
unmatched = "drop",
relationship = NULL
)
full_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL
)
# S3 method for class 'data.frame'
full_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL,
na_matches = c("na", "never"),
multiple = "all",
relationship = NULL
)Arguments
- x, y
A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames (e.g. from dbplyr or dtplyr). See Methods, below, for more details.
- by
A join specification created with
join_by(), or a character vector of variables to join by.If
NULL, the default,*_join()will perform a natural join, using all variables in common acrossxandy. A message lists the variables so that you can check they're correct; suppress the message by supplyingbyexplicitly.To join on different variables between
xandy, use ajoin_by()specification. For example,join_by(a == b)will matchx$atoy$b.To join by multiple variables, use a
join_by()specification with multiple expressions. For example,join_by(a == b, c == d)will matchx$atoy$bandx$ctoy$d. If the column names are the same betweenxandy, you can shorten this by listing only the variable names, likejoin_by(a, c).join_by()can also be used to perform inequality, rolling, and overlap joins. See the documentation at ?join_by for details on these types of joins.For simple equality joins, you can alternatively specify a character vector of variable names to join by. For example,
by = c("a", "b")joinsx$atoy$aandx$btoy$b. If variable names differ betweenxandy, use a named character vector likeby = c("x_a" = "y_a", "x_b" = "y_b").To perform a cross-join, generating all combinations of
xandy, seecross_join().- copy
If
xandyare not from the same data source, andcopyisTRUE, thenywill be copied into the same src asx. This allows you to join tables across srcs, but it is a potentially expensive operation so you must opt into it.- suffix
If there are non-joined duplicate variables in
xandy, these suffixes will be added to the output to disambiguate them. Should be a character vector of length 2.- ...
Other parameters passed onto methods.
- keep
Should the join keys from both
xandybe preserved in the output?If
NULL, the default, joins on equality retain only the keys fromx, while joins on inequality retain the keys from both inputs.If
TRUE, all keys from both inputs are retained.If
FALSE, only keys fromxare retained. For right and full joins, the data in key columns corresponding to rows that only exist inyare merged into the key columns fromx. Can't be used when joining on inequality conditions.
- na_matches
Should two
NAor twoNaNvalues match?- multiple
Handling of rows in
xwith multiple matches iny. For each row ofx:"all", the default, returns every match detected iny. This is the same behavior as SQL."any"returns one match detected iny, with no guarantees on which match will be returned. It is often faster than"first"and"last"if you just need to detect if there is at least one match."first"returns the first match detected iny."last"returns the last match detected iny.
- unmatched
How should unmatched keys that would result in dropped rows be handled?
"drop"drops unmatched keys from the result."error"throws an error if unmatched keys are detected.
unmatchedis intended to protect you from accidentally dropping rows during a join. It only checks for unmatched keys in the input that could potentially drop rows.For left joins, it checks
y.For right joins, it checks
x.For inner joins, it checks both
xandy. In this case,unmatchedis also allowed to be a character vector of length 2 to specify the behavior forxandyindependently.
- relationship
Handling of the expected relationship between the keys of
xandy. If the expectations chosen from the list below are invalidated, an error is thrown.NULL, the default, doesn't expect there to be any relationship betweenxandy. However, for equality joins it will check for a many-to-many relationship (which is typically unexpected) and will warn if one occurs, encouraging you to either take a closer look at your inputs or make this relationship explicit by specifying"many-to-many".See the Many-to-many relationships section for more details.
"one-to-one"expects:Each row in
xmatches at most 1 row iny.Each row in
ymatches at most 1 row inx.
"one-to-many"expects:Each row in
ymatches at most 1 row inx.
"many-to-one"expects:Each row in
xmatches at most 1 row iny.
"many-to-many"doesn't perform any relationship checks, but is provided to allow you to be explicit about this relationship if you know it exists.
relationshipdoesn't handle cases where there are zero matches. For that, seeunmatched.
Value
An object of the same type as x (including the same groups). The order of
the rows and columns of x is preserved as much as possible. The output has
the following properties:
The rows are affect by the join type.
inner_join()returns matchedxrows.left_join()returns allxrows.right_join()returns matched ofxrows, followed by unmatchedyrows.full_join()returns allxrows, followed by unmatchedyrows.
Output columns include all columns from
xand all non-key columns fromy. Ifkeep = TRUE, the key columns fromyare included as well.If non-key columns in
xandyhave the same name,suffixes are added to disambiguate. Ifkeep = TRUEand key columns inxandyhave the same name,suffixes are added to disambiguate these as well.If
keep = FALSE, output columns included inbyare coerced to their common type betweenxandy.
Many-to-many relationships
By default, dplyr guards against many-to-many relationships in equality joins by throwing a warning. These occur when both of the following are true:
A row in
xmatches multiple rows iny.A row in
ymatches multiple rows inx.
This is typically surprising, as most joins involve a relationship of one-to-one, one-to-many, or many-to-one, and is often the result of an improperly specified join. Many-to-many relationships are particularly problematic because they can result in a Cartesian explosion of the number of rows returned from the join.
If a many-to-many relationship is expected, silence this warning by
explicitly setting relationship = "many-to-many".
In production code, it is best to preemptively set relationship to whatever
relationship you expect to exist between the keys of x and y, as this
forces an error to occur immediately if the data doesn't align with your
expectations.
Inequality joins typically result in many-to-many relationships by nature, so they don't warn on them by default, but you should still take extra care when specifying an inequality join, because they also have the capability to return a large number of rows.
Rolling joins don't warn on many-to-many relationships either, but many
rolling joins follow a many-to-one relationship, so it is often useful to
set relationship = "many-to-one" to enforce this.
Note that in SQL, most database providers won't let you specify a many-to-many relationship between two tables, instead requiring that you create a third junction table that results in two one-to-many relationships instead.
Methods
These functions are generics, which means that packages can provide implementations (methods) for other classes. See the documentation of individual methods for extra arguments and differences in behaviour.
Methods available in currently loaded packages:
See also
Other joins:
cross_join(),
filter-joins,
nest_join()
Examples
band_members %>% inner_join(band_instruments)
#> Joining with `by = join_by(name)`
#> # A tibble: 2 × 3
#> name band plays
#> <chr> <chr> <chr>
#> 1 John Beatles guitar
#> 2 Paul Beatles bass
band_members %>% left_join(band_instruments)
#> Joining with `by = join_by(name)`
#> # A tibble: 3 × 3
#> name band plays
#> <chr> <chr> <chr>
#> 1 Mick Stones NA
#> 2 John Beatles guitar
#> 3 Paul Beatles bass
band_members %>% right_join(band_instruments)
#> Joining with `by = join_by(name)`
#> # A tibble: 3 × 3
#> name band plays
#> <chr> <chr> <chr>
#> 1 John Beatles guitar
#> 2 Paul Beatles bass
#> 3 Keith NA guitar
band_members %>% full_join(band_instruments)
#> Joining with `by = join_by(name)`
#> # A tibble: 4 × 3
#> name band plays
#> <chr> <chr> <chr>
#> 1 Mick Stones NA
#> 2 John Beatles guitar
#> 3 Paul Beatles bass
#> 4 Keith NA guitar
# To suppress the message about joining variables, supply `by`
band_members %>% inner_join(band_instruments, by = join_by(name))
#> # A tibble: 2 × 3
#> name band plays
#> <chr> <chr> <chr>
#> 1 John Beatles guitar
#> 2 Paul Beatles bass
# This is good practice in production code
# Use an equality expression if the join variables have different names
band_members %>% full_join(band_instruments2, by = join_by(name == artist))
#> # A tibble: 4 × 3
#> name band plays
#> <chr> <chr> <chr>
#> 1 Mick Stones NA
#> 2 John Beatles guitar
#> 3 Paul Beatles bass
#> 4 Keith NA guitar
# By default, the join keys from `x` and `y` are coalesced in the output; use
# `keep = TRUE` to keep the join keys from both `x` and `y`
band_members %>%
full_join(band_instruments2, by = join_by(name == artist), keep = TRUE)
#> # A tibble: 4 × 4
#> name band artist plays
#> <chr> <chr> <chr> <chr>
#> 1 Mick Stones NA NA
#> 2 John Beatles John guitar
#> 3 Paul Beatles Paul bass
#> 4 NA NA Keith guitar
# If a row in `x` matches multiple rows in `y`, all the rows in `y` will be
# returned once for each matching row in `x`.
df1 <- tibble(x = 1:3)
df2 <- tibble(x = c(1, 1, 2), y = c("first", "second", "third"))
df1 %>% left_join(df2)
#> Joining with `by = join_by(x)`
#> # A tibble: 4 × 2
#> x y
#> <dbl> <chr>
#> 1 1 first
#> 2 1 second
#> 3 2 third
#> 4 3 NA
# If a row in `y` also matches multiple rows in `x`, this is known as a
# many-to-many relationship, which is typically a result of an improperly
# specified join or some kind of messy data. In this case, a warning is
# thrown by default:
df3 <- tibble(x = c(1, 1, 1, 3))
df3 %>% left_join(df2)
#> Joining with `by = join_by(x)`
#> Warning: Detected an unexpected many-to-many relationship between `x` and `y`.
#> ℹ Row 1 of `x` matches multiple rows in `y`.
#> ℹ Row 1 of `y` matches multiple rows in `x`.
#> ℹ If a many-to-many relationship is expected, set `relationship =
#> "many-to-many"` to silence this warning.
#> # A tibble: 7 × 2
#> x y
#> <dbl> <chr>
#> 1 1 first
#> 2 1 second
#> 3 1 first
#> 4 1 second
#> 5 1 first
#> 6 1 second
#> 7 3 NA
# In the rare case where a many-to-many relationship is expected, set
# `relationship = "many-to-many"` to silence this warning
df3 %>% left_join(df2, relationship = "many-to-many")
#> Joining with `by = join_by(x)`
#> # A tibble: 7 × 2
#> x y
#> <dbl> <chr>
#> 1 1 first
#> 2 1 second
#> 3 1 first
#> 4 1 second
#> 5 1 first
#> 6 1 second
#> 7 3 NA
# Use `join_by()` with a condition other than `==` to perform an inequality
# join. Here we match on every instance where `df1$x > df2$x`.
df1 %>% left_join(df2, join_by(x > x))
#> # A tibble: 6 × 3
#> x.x x.y y
#> <int> <dbl> <chr>
#> 1 1 NA NA
#> 2 2 1 first
#> 3 2 1 second
#> 4 3 1 first
#> 5 3 1 second
#> 6 3 2 third
# By default, NAs match other NAs so that there are two
# rows in the output of this join:
df1 <- data.frame(x = c(1, NA), y = 2)
df2 <- data.frame(x = c(1, NA), z = 3)
left_join(df1, df2)
#> Joining with `by = join_by(x)`
#> x y z
#> 1 1 2 3
#> 2 NA 2 3
# You can optionally request that NAs don't match, giving a
# a result that more closely resembles SQL joins
left_join(df1, df2, na_matches = "never")
#> Joining with `by = join_by(x)`
#> x y z
#> 1 1 2 3
#> 2 NA 2 NA
