arrange()
orders the rows of a data frame by the values of selected
columns.
Unlike other dplyr verbs, arrange()
largely ignores grouping; you
need to explicitly mention grouping variables (or use .by_group = TRUE
)
in order to group by them, and functions of variables are evaluated
once per data frame, not once per group.
Usage
arrange(.data, ..., .by_group = FALSE)
# S3 method for class 'data.frame'
arrange(.data, ..., .by_group = FALSE, .locale = NULL)
Arguments
- .data
A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dtplyr). See Methods, below, for more details.
- ...
<
data-masking
> Variables, or functions of variables. Usedesc()
to sort a variable in descending order.- .by_group
If
TRUE
, will sort first by grouping variable. Applies to grouped data frames only.- .locale
The locale to sort character vectors in.
If
NULL
, the default, uses the"C"
locale unless thedplyr.legacy_locale
global option escape hatch is active. See the dplyr-locale help page for more details.If a single string from
stringi::stri_locale_list()
is supplied, then this will be used as the locale to sort with. For example,"en"
will sort with the American English locale. This requires the stringi package.If
"C"
is supplied, then character vectors will always be sorted in the C locale. This does not require stringi and is often much faster than supplying a locale identifier.
The C locale is not the same as English locales, such as
"en"
, particularly when it comes to data containing a mix of upper and lower case letters. This is explained in more detail on the locale help page under theDefault locale
section.
Value
An object of the same type as .data
. The output has the following
properties:
All rows appear in the output, but (usually) in a different place.
Columns are not modified.
Groups are not modified.
Data frame attributes are preserved.
Methods
This function is a generic, which means that packages can provide implementations (methods) for other classes. See the documentation of individual methods for extra arguments and differences in behaviour.
The following methods are currently available in loaded packages:
dplyr (data.frame
)
.
Examples
arrange(mtcars, cyl, disp)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
#> Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
#> Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
#> Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
#> Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
#> Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
#> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#> Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
#> Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
#> Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
#> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
#> Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
#> Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
#> Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
#> Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
#> AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
#> Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
#> Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
#> Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
#> Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
#> Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
#> Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
#> Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
#> Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
#> Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
arrange(mtcars, desc(disp))
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
#> Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
#> Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
#> Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
#> Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
#> Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
#> Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
#> Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
#> Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
#> AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
#> Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
#> Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
#> Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
#> Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
#> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
#> Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
#> Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
#> Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
#> Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
#> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#> Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
#> Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
#> Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
#> Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
#> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#> Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
#> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
# grouped arrange ignores groups
by_cyl <- mtcars %>% group_by(cyl)
by_cyl %>% arrange(desc(wt))
#> # A tibble: 32 × 11
#> # Groups: cyl [3]
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 10.4 8 460 215 3 5.42 17.8 0 0 3 4
#> 2 14.7 8 440 230 3.23 5.34 17.4 0 0 3 4
#> 3 10.4 8 472 205 2.93 5.25 18.0 0 0 3 4
#> 4 16.4 8 276. 180 3.07 4.07 17.4 0 0 3 3
#> 5 19.2 8 400 175 3.08 3.84 17.0 0 0 3 2
#> 6 13.3 8 350 245 3.73 3.84 15.4 0 0 3 4
#> 7 15.2 8 276. 180 3.07 3.78 18 0 0 3 3
#> 8 17.3 8 276. 180 3.07 3.73 17.6 0 0 3 3
#> 9 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
#> 10 15 8 301 335 3.54 3.57 14.6 0 1 5 8
#> # ℹ 22 more rows
# Unless you specifically ask:
by_cyl %>% arrange(desc(wt), .by_group = TRUE)
#> # A tibble: 32 × 11
#> # Groups: cyl [3]
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
#> 2 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
#> 3 21.4 4 121 109 4.11 2.78 18.6 1 1 4 2
#> 4 21.5 4 120. 97 3.7 2.46 20.0 1 0 3 1
#> 5 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> 6 32.4 4 78.7 66 4.08 2.2 19.5 1 1 4 1
#> 7 26 4 120. 91 4.43 2.14 16.7 0 1 5 2
#> 8 27.3 4 79 66 4.08 1.94 18.9 1 1 4 1
#> 9 33.9 4 71.1 65 4.22 1.84 19.9 1 1 4 1
#> 10 30.4 4 75.7 52 4.93 1.62 18.5 1 1 4 2
#> # ℹ 22 more rows
# use embracing when wrapping in a function;
# see ?rlang::args_data_masking for more details
tidy_eval_arrange <- function(.data, var) {
.data %>%
arrange({{ var }})
}
tidy_eval_arrange(mtcars, mpg)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
#> Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
#> Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
#> Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
#> Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
#> Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
#> Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
#> AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
#> Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
#> Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
#> Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
#> Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
#> Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
#> Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
#> Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
#> Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
#> Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
#> Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
#> Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
#> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
#> Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
#> Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
#> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
#> Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
#> Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
# Use `across()` or `pick()` to select columns with tidy-select
iris %>% arrange(pick(starts_with("Sepal")))
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 4.3 3.0 1.1 0.1 setosa
#> 2 4.4 2.9 1.4 0.2 setosa
#> 3 4.4 3.0 1.3 0.2 setosa
#> 4 4.4 3.2 1.3 0.2 setosa
#> 5 4.5 2.3 1.3 0.3 setosa
#> 6 4.6 3.1 1.5 0.2 setosa
#> 7 4.6 3.2 1.4 0.2 setosa
#> 8 4.6 3.4 1.4 0.3 setosa
#> 9 4.6 3.6 1.0 0.2 setosa
#> 10 4.7 3.2 1.3 0.2 setosa
#> 11 4.7 3.2 1.6 0.2 setosa
#> 12 4.8 3.0 1.4 0.1 setosa
#> 13 4.8 3.0 1.4 0.3 setosa
#> 14 4.8 3.1 1.6 0.2 setosa
#> 15 4.8 3.4 1.6 0.2 setosa
#> 16 4.8 3.4 1.9 0.2 setosa
#> 17 4.9 2.4 3.3 1.0 versicolor
#> 18 4.9 2.5 4.5 1.7 virginica
#> 19 4.9 3.0 1.4 0.2 setosa
#> 20 4.9 3.1 1.5 0.1 setosa
#> 21 4.9 3.1 1.5 0.2 setosa
#> 22 4.9 3.6 1.4 0.1 setosa
#> 23 5.0 2.0 3.5 1.0 versicolor
#> 24 5.0 2.3 3.3 1.0 versicolor
#> 25 5.0 3.0 1.6 0.2 setosa
#> 26 5.0 3.2 1.2 0.2 setosa
#> 27 5.0 3.3 1.4 0.2 setosa
#> 28 5.0 3.4 1.5 0.2 setosa
#> 29 5.0 3.4 1.6 0.4 setosa
#> 30 5.0 3.5 1.3 0.3 setosa
#> 31 5.0 3.5 1.6 0.6 setosa
#> 32 5.0 3.6 1.4 0.2 setosa
#> 33 5.1 2.5 3.0 1.1 versicolor
#> 34 5.1 3.3 1.7 0.5 setosa
#> 35 5.1 3.4 1.5 0.2 setosa
#> 36 5.1 3.5 1.4 0.2 setosa
#> 37 5.1 3.5 1.4 0.3 setosa
#> 38 5.1 3.7 1.5 0.4 setosa
#> 39 5.1 3.8 1.5 0.3 setosa
#> 40 5.1 3.8 1.9 0.4 setosa
#> 41 5.1 3.8 1.6 0.2 setosa
#> 42 5.2 2.7 3.9 1.4 versicolor
#> 43 5.2 3.4 1.4 0.2 setosa
#> 44 5.2 3.5 1.5 0.2 setosa
#> 45 5.2 4.1 1.5 0.1 setosa
#> 46 5.3 3.7 1.5 0.2 setosa
#> 47 5.4 3.0 4.5 1.5 versicolor
#> 48 5.4 3.4 1.7 0.2 setosa
#> 49 5.4 3.4 1.5 0.4 setosa
#> 50 5.4 3.7 1.5 0.2 setosa
#> 51 5.4 3.9 1.7 0.4 setosa
#> 52 5.4 3.9 1.3 0.4 setosa
#> 53 5.5 2.3 4.0 1.3 versicolor
#> 54 5.5 2.4 3.8 1.1 versicolor
#> 55 5.5 2.4 3.7 1.0 versicolor
#> 56 5.5 2.5 4.0 1.3 versicolor
#> 57 5.5 2.6 4.4 1.2 versicolor
#> 58 5.5 3.5 1.3 0.2 setosa
#> 59 5.5 4.2 1.4 0.2 setosa
#> 60 5.6 2.5 3.9 1.1 versicolor
#> 61 5.6 2.7 4.2 1.3 versicolor
#> 62 5.6 2.8 4.9 2.0 virginica
#> 63 5.6 2.9 3.6 1.3 versicolor
#> 64 5.6 3.0 4.5 1.5 versicolor
#> 65 5.6 3.0 4.1 1.3 versicolor
#> 66 5.7 2.5 5.0 2.0 virginica
#> 67 5.7 2.6 3.5 1.0 versicolor
#> 68 5.7 2.8 4.5 1.3 versicolor
#> 69 5.7 2.8 4.1 1.3 versicolor
#> 70 5.7 2.9 4.2 1.3 versicolor
#> 71 5.7 3.0 4.2 1.2 versicolor
#> 72 5.7 3.8 1.7 0.3 setosa
#> 73 5.7 4.4 1.5 0.4 setosa
#> 74 5.8 2.6 4.0 1.2 versicolor
#> 75 5.8 2.7 4.1 1.0 versicolor
#> 76 5.8 2.7 3.9 1.2 versicolor
#> 77 5.8 2.7 5.1 1.9 virginica
#> 78 5.8 2.7 5.1 1.9 virginica
#> 79 5.8 2.8 5.1 2.4 virginica
#> 80 5.8 4.0 1.2 0.2 setosa
#> 81 5.9 3.0 4.2 1.5 versicolor
#> 82 5.9 3.0 5.1 1.8 virginica
#> 83 5.9 3.2 4.8 1.8 versicolor
#> 84 6.0 2.2 4.0 1.0 versicolor
#> 85 6.0 2.2 5.0 1.5 virginica
#> 86 6.0 2.7 5.1 1.6 versicolor
#> 87 6.0 2.9 4.5 1.5 versicolor
#> 88 6.0 3.0 4.8 1.8 virginica
#> 89 6.0 3.4 4.5 1.6 versicolor
#> 90 6.1 2.6 5.6 1.4 virginica
#> 91 6.1 2.8 4.0 1.3 versicolor
#> 92 6.1 2.8 4.7 1.2 versicolor
#> 93 6.1 2.9 4.7 1.4 versicolor
#> 94 6.1 3.0 4.6 1.4 versicolor
#> 95 6.1 3.0 4.9 1.8 virginica
#> 96 6.2 2.2 4.5 1.5 versicolor
#> 97 6.2 2.8 4.8 1.8 virginica
#> 98 6.2 2.9 4.3 1.3 versicolor
#> 99 6.2 3.4 5.4 2.3 virginica
#> 100 6.3 2.3 4.4 1.3 versicolor
#> 101 6.3 2.5 4.9 1.5 versicolor
#> 102 6.3 2.5 5.0 1.9 virginica
#> 103 6.3 2.7 4.9 1.8 virginica
#> 104 6.3 2.8 5.1 1.5 virginica
#> 105 6.3 2.9 5.6 1.8 virginica
#> 106 6.3 3.3 4.7 1.6 versicolor
#> 107 6.3 3.3 6.0 2.5 virginica
#> 108 6.3 3.4 5.6 2.4 virginica
#> 109 6.4 2.7 5.3 1.9 virginica
#> 110 6.4 2.8 5.6 2.1 virginica
#> 111 6.4 2.8 5.6 2.2 virginica
#> 112 6.4 2.9 4.3 1.3 versicolor
#> 113 6.4 3.1 5.5 1.8 virginica
#> 114 6.4 3.2 4.5 1.5 versicolor
#> 115 6.4 3.2 5.3 2.3 virginica
#> 116 6.5 2.8 4.6 1.5 versicolor
#> 117 6.5 3.0 5.8 2.2 virginica
#> 118 6.5 3.0 5.5 1.8 virginica
#> 119 6.5 3.0 5.2 2.0 virginica
#> 120 6.5 3.2 5.1 2.0 virginica
#> 121 6.6 2.9 4.6 1.3 versicolor
#> 122 6.6 3.0 4.4 1.4 versicolor
#> 123 6.7 2.5 5.8 1.8 virginica
#> 124 6.7 3.0 5.0 1.7 versicolor
#> 125 6.7 3.0 5.2 2.3 virginica
#> 126 6.7 3.1 4.4 1.4 versicolor
#> 127 6.7 3.1 4.7 1.5 versicolor
#> 128 6.7 3.1 5.6 2.4 virginica
#> 129 6.7 3.3 5.7 2.1 virginica
#> 130 6.7 3.3 5.7 2.5 virginica
#> 131 6.8 2.8 4.8 1.4 versicolor
#> 132 6.8 3.0 5.5 2.1 virginica
#> 133 6.8 3.2 5.9 2.3 virginica
#> 134 6.9 3.1 4.9 1.5 versicolor
#> 135 6.9 3.1 5.4 2.1 virginica
#> 136 6.9 3.1 5.1 2.3 virginica
#> 137 6.9 3.2 5.7 2.3 virginica
#> 138 7.0 3.2 4.7 1.4 versicolor
#> 139 7.1 3.0 5.9 2.1 virginica
#> 140 7.2 3.0 5.8 1.6 virginica
#> 141 7.2 3.2 6.0 1.8 virginica
#> 142 7.2 3.6 6.1 2.5 virginica
#> 143 7.3 2.9 6.3 1.8 virginica
#> 144 7.4 2.8 6.1 1.9 virginica
#> 145 7.6 3.0 6.6 2.1 virginica
#> 146 7.7 2.6 6.9 2.3 virginica
#> 147 7.7 2.8 6.7 2.0 virginica
#> 148 7.7 3.0 6.1 2.3 virginica
#> 149 7.7 3.8 6.7 2.2 virginica
#> 150 7.9 3.8 6.4 2.0 virginica
iris %>% arrange(across(starts_with("Sepal"), desc))
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 7.9 3.8 6.4 2.0 virginica
#> 2 7.7 3.8 6.7 2.2 virginica
#> 3 7.7 3.0 6.1 2.3 virginica
#> 4 7.7 2.8 6.7 2.0 virginica
#> 5 7.7 2.6 6.9 2.3 virginica
#> 6 7.6 3.0 6.6 2.1 virginica
#> 7 7.4 2.8 6.1 1.9 virginica
#> 8 7.3 2.9 6.3 1.8 virginica
#> 9 7.2 3.6 6.1 2.5 virginica
#> 10 7.2 3.2 6.0 1.8 virginica
#> 11 7.2 3.0 5.8 1.6 virginica
#> 12 7.1 3.0 5.9 2.1 virginica
#> 13 7.0 3.2 4.7 1.4 versicolor
#> 14 6.9 3.2 5.7 2.3 virginica
#> 15 6.9 3.1 4.9 1.5 versicolor
#> 16 6.9 3.1 5.4 2.1 virginica
#> 17 6.9 3.1 5.1 2.3 virginica
#> 18 6.8 3.2 5.9 2.3 virginica
#> 19 6.8 3.0 5.5 2.1 virginica
#> 20 6.8 2.8 4.8 1.4 versicolor
#> 21 6.7 3.3 5.7 2.1 virginica
#> 22 6.7 3.3 5.7 2.5 virginica
#> 23 6.7 3.1 4.4 1.4 versicolor
#> 24 6.7 3.1 4.7 1.5 versicolor
#> 25 6.7 3.1 5.6 2.4 virginica
#> 26 6.7 3.0 5.0 1.7 versicolor
#> 27 6.7 3.0 5.2 2.3 virginica
#> 28 6.7 2.5 5.8 1.8 virginica
#> 29 6.6 3.0 4.4 1.4 versicolor
#> 30 6.6 2.9 4.6 1.3 versicolor
#> 31 6.5 3.2 5.1 2.0 virginica
#> 32 6.5 3.0 5.8 2.2 virginica
#> 33 6.5 3.0 5.5 1.8 virginica
#> 34 6.5 3.0 5.2 2.0 virginica
#> 35 6.5 2.8 4.6 1.5 versicolor
#> 36 6.4 3.2 4.5 1.5 versicolor
#> 37 6.4 3.2 5.3 2.3 virginica
#> 38 6.4 3.1 5.5 1.8 virginica
#> 39 6.4 2.9 4.3 1.3 versicolor
#> 40 6.4 2.8 5.6 2.1 virginica
#> 41 6.4 2.8 5.6 2.2 virginica
#> 42 6.4 2.7 5.3 1.9 virginica
#> 43 6.3 3.4 5.6 2.4 virginica
#> 44 6.3 3.3 4.7 1.6 versicolor
#> 45 6.3 3.3 6.0 2.5 virginica
#> 46 6.3 2.9 5.6 1.8 virginica
#> 47 6.3 2.8 5.1 1.5 virginica
#> 48 6.3 2.7 4.9 1.8 virginica
#> 49 6.3 2.5 4.9 1.5 versicolor
#> 50 6.3 2.5 5.0 1.9 virginica
#> 51 6.3 2.3 4.4 1.3 versicolor
#> 52 6.2 3.4 5.4 2.3 virginica
#> 53 6.2 2.9 4.3 1.3 versicolor
#> 54 6.2 2.8 4.8 1.8 virginica
#> 55 6.2 2.2 4.5 1.5 versicolor
#> 56 6.1 3.0 4.6 1.4 versicolor
#> 57 6.1 3.0 4.9 1.8 virginica
#> 58 6.1 2.9 4.7 1.4 versicolor
#> 59 6.1 2.8 4.0 1.3 versicolor
#> 60 6.1 2.8 4.7 1.2 versicolor
#> 61 6.1 2.6 5.6 1.4 virginica
#> 62 6.0 3.4 4.5 1.6 versicolor
#> 63 6.0 3.0 4.8 1.8 virginica
#> 64 6.0 2.9 4.5 1.5 versicolor
#> 65 6.0 2.7 5.1 1.6 versicolor
#> 66 6.0 2.2 4.0 1.0 versicolor
#> 67 6.0 2.2 5.0 1.5 virginica
#> 68 5.9 3.2 4.8 1.8 versicolor
#> 69 5.9 3.0 4.2 1.5 versicolor
#> 70 5.9 3.0 5.1 1.8 virginica
#> 71 5.8 4.0 1.2 0.2 setosa
#> 72 5.8 2.8 5.1 2.4 virginica
#> 73 5.8 2.7 4.1 1.0 versicolor
#> 74 5.8 2.7 3.9 1.2 versicolor
#> 75 5.8 2.7 5.1 1.9 virginica
#> 76 5.8 2.7 5.1 1.9 virginica
#> 77 5.8 2.6 4.0 1.2 versicolor
#> 78 5.7 4.4 1.5 0.4 setosa
#> 79 5.7 3.8 1.7 0.3 setosa
#> 80 5.7 3.0 4.2 1.2 versicolor
#> 81 5.7 2.9 4.2 1.3 versicolor
#> 82 5.7 2.8 4.5 1.3 versicolor
#> 83 5.7 2.8 4.1 1.3 versicolor
#> 84 5.7 2.6 3.5 1.0 versicolor
#> 85 5.7 2.5 5.0 2.0 virginica
#> 86 5.6 3.0 4.5 1.5 versicolor
#> 87 5.6 3.0 4.1 1.3 versicolor
#> 88 5.6 2.9 3.6 1.3 versicolor
#> 89 5.6 2.8 4.9 2.0 virginica
#> 90 5.6 2.7 4.2 1.3 versicolor
#> 91 5.6 2.5 3.9 1.1 versicolor
#> 92 5.5 4.2 1.4 0.2 setosa
#> 93 5.5 3.5 1.3 0.2 setosa
#> 94 5.5 2.6 4.4 1.2 versicolor
#> 95 5.5 2.5 4.0 1.3 versicolor
#> 96 5.5 2.4 3.8 1.1 versicolor
#> 97 5.5 2.4 3.7 1.0 versicolor
#> 98 5.5 2.3 4.0 1.3 versicolor
#> 99 5.4 3.9 1.7 0.4 setosa
#> 100 5.4 3.9 1.3 0.4 setosa
#> 101 5.4 3.7 1.5 0.2 setosa
#> 102 5.4 3.4 1.7 0.2 setosa
#> 103 5.4 3.4 1.5 0.4 setosa
#> 104 5.4 3.0 4.5 1.5 versicolor
#> 105 5.3 3.7 1.5 0.2 setosa
#> 106 5.2 4.1 1.5 0.1 setosa
#> 107 5.2 3.5 1.5 0.2 setosa
#> 108 5.2 3.4 1.4 0.2 setosa
#> 109 5.2 2.7 3.9 1.4 versicolor
#> 110 5.1 3.8 1.5 0.3 setosa
#> 111 5.1 3.8 1.9 0.4 setosa
#> 112 5.1 3.8 1.6 0.2 setosa
#> 113 5.1 3.7 1.5 0.4 setosa
#> 114 5.1 3.5 1.4 0.2 setosa
#> 115 5.1 3.5 1.4 0.3 setosa
#> 116 5.1 3.4 1.5 0.2 setosa
#> 117 5.1 3.3 1.7 0.5 setosa
#> 118 5.1 2.5 3.0 1.1 versicolor
#> 119 5.0 3.6 1.4 0.2 setosa
#> 120 5.0 3.5 1.3 0.3 setosa
#> 121 5.0 3.5 1.6 0.6 setosa
#> 122 5.0 3.4 1.5 0.2 setosa
#> 123 5.0 3.4 1.6 0.4 setosa
#> 124 5.0 3.3 1.4 0.2 setosa
#> 125 5.0 3.2 1.2 0.2 setosa
#> 126 5.0 3.0 1.6 0.2 setosa
#> 127 5.0 2.3 3.3 1.0 versicolor
#> 128 5.0 2.0 3.5 1.0 versicolor
#> 129 4.9 3.6 1.4 0.1 setosa
#> 130 4.9 3.1 1.5 0.1 setosa
#> 131 4.9 3.1 1.5 0.2 setosa
#> 132 4.9 3.0 1.4 0.2 setosa
#> 133 4.9 2.5 4.5 1.7 virginica
#> 134 4.9 2.4 3.3 1.0 versicolor
#> 135 4.8 3.4 1.6 0.2 setosa
#> 136 4.8 3.4 1.9 0.2 setosa
#> 137 4.8 3.1 1.6 0.2 setosa
#> 138 4.8 3.0 1.4 0.1 setosa
#> 139 4.8 3.0 1.4 0.3 setosa
#> 140 4.7 3.2 1.3 0.2 setosa
#> 141 4.7 3.2 1.6 0.2 setosa
#> 142 4.6 3.6 1.0 0.2 setosa
#> 143 4.6 3.4 1.4 0.3 setosa
#> 144 4.6 3.2 1.4 0.2 setosa
#> 145 4.6 3.1 1.5 0.2 setosa
#> 146 4.5 2.3 1.3 0.3 setosa
#> 147 4.4 3.2 1.3 0.2 setosa
#> 148 4.4 3.0 1.3 0.2 setosa
#> 149 4.4 2.9 1.4 0.2 setosa
#> 150 4.3 3.0 1.1 0.1 setosa