dplyr, and R in general, are particularly well suited to performing
operations over columns, and performing operations over rows is much
harder. In this vignette, you’ll learn dplyr’s approach centred around
the row-wise data frame created by rowwise()
.
There are three common use cases that we discuss in this vignette:
- Row-wise aggregates (e.g. compute the mean of x, y, z).
- Calling a function multiple times with varying arguments.
- Working with list-columns.
These types of problems are often easily solved with a for loop, but it’s nice to have a solution that fits naturally into a pipeline.
Of course, someone has to write loops. It doesn’t have to be you. — Jenny Bryan
Creating
Row-wise operations require a special type of grouping where each
group consists of a single row. You create this with
rowwise()
:
df <- tibble(x = 1:2, y = 3:4, z = 5:6)
df %>% rowwise()
#> # A tibble: 2 × 3
#> # Rowwise:
#> x y z
#> <int> <int> <int>
#> 1 1 3 5
#> 2 2 4 6
Like group_by()
, rowwise()
doesn’t really
do anything itself; it just changes how the other verbs work. For
example, compare the results of mutate()
in the following
code:
df %>% mutate(m = mean(c(x, y, z)))
#> # A tibble: 2 × 4
#> x y z m
#> <int> <int> <int> <dbl>
#> 1 1 3 5 3.5
#> 2 2 4 6 3.5
df %>% rowwise() %>% mutate(m = mean(c(x, y, z)))
#> # A tibble: 2 × 4
#> # Rowwise:
#> x y z m
#> <int> <int> <int> <dbl>
#> 1 1 3 5 3
#> 2 2 4 6 4
If you use mutate()
with a regular data frame, it
computes the mean of x
, y
, and z
across all rows. If you apply it to a row-wise data frame, it computes
the mean for each row.
You can optionally supply “identifier” variables in your call to
rowwise()
. These variables are preserved when you call
summarise()
, so they behave somewhat similarly to the
grouping variables passed to group_by()
:
df <- tibble(name = c("Mara", "Hadley"), x = 1:2, y = 3:4, z = 5:6)
df %>%
rowwise() %>%
summarise(m = mean(c(x, y, z)))
#> # A tibble: 2 × 1
#> m
#> <dbl>
#> 1 3
#> 2 4
df %>%
rowwise(name) %>%
summarise(m = mean(c(x, y, z)))
#> `summarise()` has grouped output by 'name'. You can override using the
#> `.groups` argument.
#> # A tibble: 2 × 2
#> # Groups: name [2]
#> name m
#> <chr> <dbl>
#> 1 Mara 3
#> 2 Hadley 4
rowwise()
is just a special form of grouping, so if you
want to remove it from a data frame, just call
ungroup()
.
Per row summary statistics
dplyr::summarise()
makes it really easy to summarise
values across rows within one column. When combined with
rowwise()
it also makes it easy to summarise values across
columns within one row. To see how, we’ll start by making a little
dataset:
df <- tibble(id = 1:6, w = 10:15, x = 20:25, y = 30:35, z = 40:45)
df
#> # A tibble: 6 × 5
#> id w x y z
#> <int> <int> <int> <int> <int>
#> 1 1 10 20 30 40
#> 2 2 11 21 31 41
#> 3 3 12 22 32 42
#> 4 4 13 23 33 43
#> # ℹ 2 more rows
Let’s say we want compute the sum of w
, x
,
y
, and z
for each row. We start by making a
row-wise data frame:
We can then use mutate()
to add a new column to each
row, or summarise()
to return just that one summary:
rf %>% mutate(total = sum(c(w, x, y, z)))
#> # A tibble: 6 × 6
#> # Rowwise: id
#> id w x y z total
#> <int> <int> <int> <int> <int> <int>
#> 1 1 10 20 30 40 100
#> 2 2 11 21 31 41 104
#> 3 3 12 22 32 42 108
#> 4 4 13 23 33 43 112
#> # ℹ 2 more rows
rf %>% summarise(total = sum(c(w, x, y, z)))
#> `summarise()` has grouped output by 'id'. You can override using the
#> `.groups` argument.
#> # A tibble: 6 × 2
#> # Groups: id [6]
#> id total
#> <int> <int>
#> 1 1 100
#> 2 2 104
#> 3 3 108
#> 4 4 112
#> # ℹ 2 more rows
Of course, if you have a lot of variables, it’s going to be tedious
to type in every variable name. Instead, you can use
c_across()
which uses tidy selection syntax so you can to
succinctly select many variables:
rf %>% mutate(total = sum(c_across(w:z)))
#> # A tibble: 6 × 6
#> # Rowwise: id
#> id w x y z total
#> <int> <int> <int> <int> <int> <int>
#> 1 1 10 20 30 40 100
#> 2 2 11 21 31 41 104
#> 3 3 12 22 32 42 108
#> 4 4 13 23 33 43 112
#> # ℹ 2 more rows
rf %>% mutate(total = sum(c_across(where(is.numeric))))
#> # A tibble: 6 × 6
#> # Rowwise: id
#> id w x y z total
#> <int> <int> <int> <int> <int> <int>
#> 1 1 10 20 30 40 100
#> 2 2 11 21 31 41 104
#> 3 3 12 22 32 42 108
#> 4 4 13 23 33 43 112
#> # ℹ 2 more rows
You could combine this with column-wise operations (see
vignette("colwise")
for more details) to compute the
proportion of the total for each column:
rf %>%
mutate(total = sum(c_across(w:z))) %>%
ungroup() %>%
mutate(across(w:z, ~ . / total))
#> # A tibble: 6 × 6
#> id w x y z total
#> <int> <dbl> <dbl> <dbl> <dbl> <int>
#> 1 1 0.1 0.2 0.3 0.4 100
#> 2 2 0.106 0.202 0.298 0.394 104
#> 3 3 0.111 0.204 0.296 0.389 108
#> 4 4 0.116 0.205 0.295 0.384 112
#> # ℹ 2 more rows
Row-wise summary functions
The rowwise()
approach will work for any summary
function. But if you need greater speed, it’s worth looking for a
built-in row-wise variant of your summary function. These are more
efficient because they operate on the data frame as whole; they don’t
split it into rows, compute the summary, and then join the results back
together again.
df %>% mutate(total = rowSums(pick(where(is.numeric), -id)))
#> # A tibble: 6 × 6
#> id w x y z total
#> <int> <int> <int> <int> <int> <dbl>
#> 1 1 10 20 30 40 100
#> 2 2 11 21 31 41 104
#> 3 3 12 22 32 42 108
#> 4 4 13 23 33 43 112
#> # ℹ 2 more rows
df %>% mutate(mean = rowMeans(pick(where(is.numeric), -id)))
#> # A tibble: 6 × 6
#> id w x y z mean
#> <int> <int> <int> <int> <int> <dbl>
#> 1 1 10 20 30 40 25
#> 2 2 11 21 31 41 26
#> 3 3 12 22 32 42 27
#> 4 4 13 23 33 43 28
#> # ℹ 2 more rows
NB: I use df
(not rf
) and
pick()
(not c_across()
) here because
rowMeans()
and rowSums()
take a multi-row data
frame as input. Also note that -id
is needed to avoid
selecting id
in pick()
. This wasn’t required
with the rowwise data frame because we had specified id
as
an identifier in our original call to rowwise()
, preventing
it from being selected as a grouping column.
List-columns
rowwise()
operations are a natural pairing when you have
list-columns. They allow you to avoid explicit loops and/or functions
from the apply()
or purrr::map()
families.
Motivation
Imagine you have this data frame, and you want to count the lengths of each element:
You might try calling length()
:
df %>% mutate(l = length(x))
#> # A tibble: 3 × 2
#> x l
#> <list> <int>
#> 1 <dbl [1]> 3
#> 2 <int [2]> 3
#> 3 <int [3]> 3
But that returns the length of the column, not the length of the individual values. If you’re an R documentation aficionado, you might know there’s already a base R function just for this purpose:
df %>% mutate(l = lengths(x))
#> # A tibble: 3 × 2
#> x l
#> <list> <int>
#> 1 <dbl [1]> 1
#> 2 <int [2]> 2
#> 3 <int [3]> 3
Or if you’re an experienced R programmer, you might know how to apply
a function to each element of a list using sapply()
,
vapply()
, or one of the purrr map()
functions:
df %>% mutate(l = sapply(x, length))
#> # A tibble: 3 × 2
#> x l
#> <list> <int>
#> 1 <dbl [1]> 1
#> 2 <int [2]> 2
#> 3 <int [3]> 3
df %>% mutate(l = purrr::map_int(x, length))
#> # A tibble: 3 × 2
#> x l
#> <list> <int>
#> 1 <dbl [1]> 1
#> 2 <int [2]> 2
#> 3 <int [3]> 3
But wouldn’t it be nice if you could just write
length(x)
and dplyr would figure out that you wanted to
compute the length of the element inside of x
? Since you’re
here, you might already be guessing at the answer: this is just another
application of the row-wise pattern.
Subsetting
Before we continue on, I wanted to briefly mention the magic that makes this work. This isn’t something you’ll generally need to think about (it’ll just work), but it’s useful to know about when something goes wrong.
There’s an important difference between a grouped data frame where each group happens to have one row, and a row-wise data frame where every group always has one row. Take these two data frames:
If we compute some properties of y
, you’ll notice the
results look different:
gf %>% mutate(type = typeof(y), length = length(y))
#> # A tibble: 2 × 4
#> # Groups: g [2]
#> g y type length
#> <int> <list> <chr> <int>
#> 1 1 <int [3]> list 1
#> 2 2 <chr [1]> list 1
rf %>% mutate(type = typeof(y), length = length(y))
#> # A tibble: 2 × 4
#> # Rowwise: g
#> g y type length
#> <int> <list> <chr> <int>
#> 1 1 <int [3]> integer 3
#> 2 2 <chr [1]> character 1
They key difference is that when mutate()
slices up the
columns to pass to length(y)
the grouped mutate uses
[
and the row-wise mutate uses [[
. The
following code gives a flavour of the differences if you used a for
loop:
# grouped
out1 <- integer(2)
for (i in 1:2) {
out1[[i]] <- length(df$y[i])
}
out1
#> [1] 1 1
# rowwise
out2 <- integer(2)
for (i in 1:2) {
out2[[i]] <- length(df$y[[i]])
}
out2
#> [1] 3 1
Note that this magic only applies when you’re referring to existing columns, not when you’re creating new rows. This is potentially confusing, but we’re fairly confident it’s the least worst solution, particularly given the hint in the error message.
gf %>% mutate(y2 = y)
#> # A tibble: 2 × 3
#> # Groups: g [2]
#> g y y2
#> <int> <list> <list>
#> 1 1 <int [3]> <int [3]>
#> 2 2 <chr [1]> <chr [1]>
rf %>% mutate(y2 = y)
#> Error in `mutate()`:
#> ℹ In argument: `y2 = y`.
#> ℹ In row 1.
#> Caused by error:
#> ! `y2` must be size 1, not 3.
#> ℹ Did you mean: `y2 = list(y)` ?
rf %>% mutate(y2 = list(y))
#> # A tibble: 2 × 3
#> # Rowwise: g
#> g y y2
#> <int> <list> <list>
#> 1 1 <int [3]> <int [3]>
#> 2 2 <chr [1]> <chr [1]>
Modelling
rowwise()
data frames allow you to solve a variety of
modelling problems in what I think is a particularly elegant way. We’ll
start by creating a nested data frame:
by_cyl <- mtcars %>% nest_by(cyl)
by_cyl
#> # A tibble: 3 × 2
#> # Rowwise: cyl
#> cyl data
#> <dbl> <list>
#> 1 4 <tibble [11 × 10]>
#> 2 6 <tibble [7 × 10]>
#> 3 8 <tibble [14 × 10]>
This is a little different to the usual group_by()
output: we have visibly changed the structure of the data. Now we have
three rows (one for each group), and we have a list-col,
data
, that stores the data for that group. Also note that
the output is rowwise()
; this is important because it’s
going to make working with that list of data frames much easier.
Once we have one data frame per row, it’s straightforward to make one model per row:
mods <- by_cyl %>% mutate(mod = list(lm(mpg ~ wt, data = data)))
mods
#> # A tibble: 3 × 3
#> # Rowwise: cyl
#> cyl data mod
#> <dbl> <list> <list>
#> 1 4 <tibble [11 × 10]> <lm>
#> 2 6 <tibble [7 × 10]> <lm>
#> 3 8 <tibble [14 × 10]> <lm>
And supplement that with one set of predictions per row:
mods <- mods %>% mutate(pred = list(predict(mod, data)))
mods
#> # A tibble: 3 × 4
#> # Rowwise: cyl
#> cyl data mod pred
#> <dbl> <list> <list> <list>
#> 1 4 <tibble [11 × 10]> <lm> <dbl [11]>
#> 2 6 <tibble [7 × 10]> <lm> <dbl [7]>
#> 3 8 <tibble [14 × 10]> <lm> <dbl [14]>
You could then summarise the model in a variety of ways:
mods %>% summarise(rmse = sqrt(mean((pred - data$mpg) ^ 2)))
#> `summarise()` has grouped output by 'cyl'. You can override using the
#> `.groups` argument.
#> # A tibble: 3 × 2
#> # Groups: cyl [3]
#> cyl rmse
#> <dbl> <dbl>
#> 1 4 3.01
#> 2 6 0.985
#> 3 8 1.87
mods %>% summarise(rsq = summary(mod)$r.squared)
#> `summarise()` has grouped output by 'cyl'. You can override using the
#> `.groups` argument.
#> # A tibble: 3 × 2
#> # Groups: cyl [3]
#> cyl rsq
#> <dbl> <dbl>
#> 1 4 0.509
#> 2 6 0.465
#> 3 8 0.423
mods %>% summarise(broom::glance(mod))
#> `summarise()` has grouped output by 'cyl'. You can override using the
#> `.groups` argument.
#> # A tibble: 3 × 13
#> # Groups: cyl [3]
#> cyl r.squared adj.r.squared sigma statistic p.value df logLik AIC
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 4 0.509 0.454 3.33 9.32 0.0137 1 -27.7 61.5
#> 2 6 0.465 0.357 1.17 4.34 0.0918 1 -9.83 25.7
#> 3 8 0.423 0.375 2.02 8.80 0.0118 1 -28.7 63.3
#> # ℹ 4 more variables: BIC <dbl>, deviance <dbl>, df.residual <int>,
#> # nobs <int>
Or easily access the parameters of each model:
mods %>% reframe(broom::tidy(mod))
#> # A tibble: 6 × 6
#> cyl term estimate std.error statistic p.value
#> <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 4 (Intercept) 39.6 4.35 9.10 0.00000777
#> 2 4 wt -5.65 1.85 -3.05 0.0137
#> 3 6 (Intercept) 28.4 4.18 6.79 0.00105
#> 4 6 wt -2.78 1.33 -2.08 0.0918
#> # ℹ 2 more rows
Repeated function calls
rowwise()
doesn’t just work with functions that return a
length-1 vector (aka summary functions); it can work with any function
if the result is a list. This means that rowwise()
and
mutate()
provide an elegant way to call a function many
times with varying arguments, storing the outputs alongside the
inputs.
Simulations
I think this is a particularly elegant way to perform simulations, because it lets you store simulated values along with the parameters that generated them. For example, imagine you have the following data frame that describes the properties of 3 samples from the uniform distribution:
df <- tribble(
~ n, ~ min, ~ max,
1, 0, 1,
2, 10, 100,
3, 100, 1000,
)
You can supply these parameters to runif()
by using
rowwise()
and mutate()
:
df %>%
rowwise() %>%
mutate(data = list(runif(n, min, max)))
#> # A tibble: 3 × 4
#> # Rowwise:
#> n min max data
#> <dbl> <dbl> <dbl> <list>
#> 1 1 0 1 <dbl [1]>
#> 2 2 10 100 <dbl [2]>
#> 3 3 100 1000 <dbl [3]>
Note the use of list()
here - runif()
returns multiple values and a mutate()
expression has to
return something of length 1. list()
means that we’ll get a
list column where each row is a list containing multiple values. If you
forget to use list()
, dplyr will give you a hint:
Multiple combinations
What if you want to call a function for every combination of inputs?
You can use expand.grid()
(or
tidyr::expand_grid()
) to generate the data frame and then
repeat the same pattern as above:
Varying functions
In more complicated problems, you might also want to vary the
function being called. This tends to be a bit more of an awkward fit
with this approach because the columns in the input tibble will be less
regular. But it’s still possible, and it’s a natural place to use
do.call()
:
df <- tribble(
~rng, ~params,
"runif", list(n = 10),
"rnorm", list(n = 20),
"rpois", list(n = 10, lambda = 5),
) %>%
rowwise()
df %>%
mutate(data = list(do.call(rng, params)))
#> # A tibble: 3 × 3
#> # Rowwise:
#> rng params data
#> <chr> <list> <list>
#> 1 runif <named list [1]> <dbl [10]>
#> 2 rnorm <named list [1]> <dbl [20]>
#> 3 rpois <named list [2]> <int [10]>
Previously
rowwise()
rowwise()
was also questioning for quite some time,
partly because I didn’t appreciate how many people needed the native
ability to compute summaries across multiple variables for each row. As
an alternative, we recommended performing row-wise operations with the
purrr map()
functions. However, this was challenging
because you needed to pick a map function based on the number of
arguments that were varying and the type of result, which required quite
some knowledge of purrr functions.
I was also resistant to rowwise()
because I felt like
automatically switching between [
to [[
was
too magical in the same way that automatically list()
-ing
results made do()
too magical. I’ve now persuaded myself
that the row-wise magic is good magic partly because most people find
the distinction between [
and [[
mystifying
and rowwise()
means that you don’t need to think about
it.
Since rowwise()
clearly is useful it is not longer
questioning, and we expect it to be around for the long term.
do()
We’ve questioned the need for do()
for quite some time,
because it never felt very similar to the other dplyr verbs. It had two
main modes of operation:
-
Without argument names: you could call functions that input and output data frames using
.
to refer to the “current” group. For example, the following code gets the first row of each group:mtcars %>% group_by(cyl) %>% do(head(., 1)) #> # A tibble: 3 × 11 #> # Groups: cyl [3] #> mpg cyl disp hp drat wt qsec vs am gear carb #> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1 #> 2 21 6 160 110 3.9 2.62 16.5 0 1 4 4 #> 3 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
This has been superseded by
pick()
plusreframe()
, a variant ofsummarise()
that can create multiple rows and columns per group.mtcars %>% group_by(cyl) %>% reframe(head(pick(everything()), 1)) #> # A tibble: 3 × 11 #> cyl mpg disp hp drat wt qsec vs am gear carb #> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 4 22.8 108 93 3.85 2.32 18.6 1 1 4 1 #> 2 6 21 160 110 3.9 2.62 16.5 0 1 4 4 #> 3 8 18.7 360 175 3.15 3.44 17.0 0 0 3 2
-
With arguments: it worked like
mutate()
but automatically wrapped every element in a list:mtcars %>% group_by(cyl) %>% do(nrows = nrow(.)) #> # A tibble: 3 × 2 #> # Rowwise: #> cyl nrows #> <dbl> <list> #> 1 4 <int [1]> #> 2 6 <int [1]> #> 3 8 <int [1]>
I now believe that behaviour is both too magical and not very useful, and it can be replaced by
summarise()
andpick()
.mtcars %>% group_by(cyl) %>% summarise(nrows = nrow(pick(everything()))) #> # A tibble: 3 × 2 #> cyl nrows #> <dbl> <int> #> 1 4 11 #> 2 6 7 #> 3 8 14
If needed (unlike here), you can wrap the results in a list yourself.
The addition of pick()
/across()
and the
increased scope of summarise()
/reframe()
means
that do()
is no longer needed, so it is now superseded.