See also
groups()
and group_vars()
for retrieving the grouping
variables outside selection contexts.
Examples
gdf <- iris %>% group_by(Species)
gdf %>% select(group_cols())
#> # A tibble: 150 × 1
#> # Groups: Species [3]
#> Species
#> <fct>
#> 1 setosa
#> 2 setosa
#> 3 setosa
#> 4 setosa
#> 5 setosa
#> 6 setosa
#> 7 setosa
#> 8 setosa
#> 9 setosa
#> 10 setosa
#> # ℹ 140 more rows
# Remove the grouping variables from mutate selections:
gdf %>% mutate_at(vars(-group_cols()), `/`, 100)
#> # A tibble: 150 × 5
#> # Groups: Species [3]
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 0.051 0.035 0.014 0.002 setosa
#> 2 0.049 0.03 0.014 0.002 setosa
#> 3 0.047 0.032 0.013 0.002 setosa
#> 4 0.046 0.031 0.015 0.002 setosa
#> 5 0.05 0.036 0.014 0.002 setosa
#> 6 0.054 0.039 0.017 0.004 setosa
#> 7 0.046 0.034 0.014 0.003 setosa
#> 8 0.05 0.034 0.015 0.002 setosa
#> 9 0.044 0.029 0.014 0.002 setosa
#> 10 0.049 0.031 0.015 0.001 setosa
#> # ℹ 140 more rows
# -> No longer necessary with across()
gdf %>% mutate(across(everything(), ~ . / 100))
#> # A tibble: 150 × 5
#> # Groups: Species [3]
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 0.051 0.035 0.014 0.002 setosa
#> 2 0.049 0.03 0.014 0.002 setosa
#> 3 0.047 0.032 0.013 0.002 setosa
#> 4 0.046 0.031 0.015 0.002 setosa
#> 5 0.05 0.036 0.014 0.002 setosa
#> 6 0.054 0.039 0.017 0.004 setosa
#> 7 0.046 0.034 0.014 0.003 setosa
#> 8 0.05 0.034 0.015 0.002 setosa
#> 9 0.044 0.029 0.014 0.002 setosa
#> 10 0.049 0.031 0.015 0.001 setosa
#> # ℹ 140 more rows