These are useful helpers for extracting a single value from a vector. They are guaranteed to return a meaningful value, even when the input is shorter than expected. You can also provide an optional secondary vector that defines the ordering.
Usage
nth(x, n, order_by = NULL, default = NULL, na_rm = FALSE)
first(x, order_by = NULL, default = NULL, na_rm = FALSE)
last(x, order_by = NULL, default = NULL, na_rm = FALSE)
Arguments
- x
A vector
- n
For
nth()
, a single integer specifying the position. Negative integers index from the end (i.e.-1L
will return the last value in the vector).- order_by
An optional vector the same size as
x
used to determine the order.- default
A default value to use if the position does not exist in
x
.If
NULL
, the default, a missing value is used.If supplied, this must be a single value, which will be cast to the type of
x
.When
x
is a list ,default
is allowed to be any value. There are no type or size restrictions in this case.- na_rm
Should missing values in
x
be removed before extracting the value?
Value
If x
is a list, a single element from that list. Otherwise, a vector the
same type as x
with size 1.
Details
For most vector types, first(x)
, last(x)
, and nth(x, n)
work like
x[[1]]
, x[[length(x)]
, and x[[n]]
, respectively. The primary exception
is data frames, where they instead retrieve rows, i.e. x[1, ]
, x[nrow(x), ]
, and x[n, ]
. This is consistent with the tidyverse/vctrs principle which
treats data frames as a vector of rows, rather than a vector of columns.
Examples
x <- 1:10
y <- 10:1
first(x)
#> [1] 1
last(y)
#> [1] 1
nth(x, 1)
#> [1] 1
nth(x, 5)
#> [1] 5
nth(x, -2)
#> [1] 9
# `first()` and `last()` are often useful in `summarise()`
df <- tibble(x = x, y = y)
df %>%
summarise(
across(x:y, first, .names = "{col}_first"),
y_last = last(y)
)
#> # A tibble: 1 × 3
#> x_first y_first y_last
#> <int> <int> <int>
#> 1 1 10 1
# Selecting a position that is out of bounds returns a default value
nth(x, 11)
#> [1] NA
nth(x, 0)
#> [1] NA
# This out of bounds behavior also applies to empty vectors
first(integer())
#> [1] NA
# You can customize the default value with `default`
nth(x, 11, default = -1L)
#> [1] -1
first(integer(), default = 0L)
#> [1] 0
# `order_by` provides optional ordering
last(x)
#> [1] 10
last(x, order_by = y)
#> [1] 1
# `na_rm` removes missing values before extracting the value
z <- c(NA, NA, 1, 3, NA, 5, NA)
first(z)
#> [1] NA
first(z, na_rm = TRUE)
#> [1] 1
last(z, na_rm = TRUE)
#> [1] 5
nth(z, 3, na_rm = TRUE)
#> [1] 5
# For data frames, these select entire rows
df <- tibble(a = 1:5, b = 6:10)
first(df)
#> # A tibble: 1 × 2
#> a b
#> <int> <int>
#> 1 1 6
nth(df, 4)
#> # A tibble: 1 × 2
#> a b
#> <int> <int>
#> 1 4 9