Skip to content

These are useful helpers for extracting a single value from a vector. They are guaranteed to return a meaningful value, even when the input is shorter than expected. You can also provide an optional secondary vector that defines the ordering.

Usage

nth(x, n, order_by = NULL, default = NULL, na_rm = FALSE)

first(x, order_by = NULL, default = NULL, na_rm = FALSE)

last(x, order_by = NULL, default = NULL, na_rm = FALSE)

Arguments

x

A vector

n

For nth(), a single integer specifying the position. Negative integers index from the end (i.e. -1L will return the last value in the vector).

order_by

An optional vector the same size as x used to determine the order.

default

A default value to use if the position does not exist in x.

If NULL, the default, a missing value is used.

If supplied, this must be a single value, which will be cast to the type of x.

When x is a list , default is allowed to be any value. There are no type or size restrictions in this case.

na_rm

Should missing values in x be removed before extracting the value?

Value

If x is a list, a single element from that list. Otherwise, a vector the same type as x with size 1.

Details

For most vector types, first(x), last(x), and nth(x, n) work like x[[1]], x[[length(x)], and x[[n]], respectively. The primary exception is data frames, where they instead retrieve rows, i.e. x[1, ], x[nrow(x), ], and x[n, ]. This is consistent with the tidyverse/vctrs principle which treats data frames as a vector of rows, rather than a vector of columns.

Examples

x <- 1:10
y <- 10:1

first(x)
#> [1] 1
last(y)
#> [1] 1

nth(x, 1)
#> [1] 1
nth(x, 5)
#> [1] 5
nth(x, -2)
#> [1] 9

# `first()` and `last()` are often useful in `summarise()`
df <- tibble(x = x, y = y)
df %>%
  summarise(
    across(x:y, first, .names = "{col}_first"),
    y_last = last(y)
  )
#> # A tibble: 1 × 3
#>   x_first y_first y_last
#>     <int>   <int>  <int>
#> 1       1      10      1

# Selecting a position that is out of bounds returns a default value
nth(x, 11)
#> [1] NA
nth(x, 0)
#> [1] NA

# This out of bounds behavior also applies to empty vectors
first(integer())
#> [1] NA

# You can customize the default value with `default`
nth(x, 11, default = -1L)
#> [1] -1
first(integer(), default = 0L)
#> [1] 0

# `order_by` provides optional ordering
last(x)
#> [1] 10
last(x, order_by = y)
#> [1] 1

# `na_rm` removes missing values before extracting the value
z <- c(NA, NA, 1, 3, NA, 5, NA)
first(z)
#> [1] NA
first(z, na_rm = TRUE)
#> [1] 1
last(z, na_rm = TRUE)
#> [1] 5
nth(z, 3, na_rm = TRUE)
#> [1] 5

# For data frames, these select entire rows
df <- tibble(a = 1:5, b = 6:10)
first(df)
#> # A tibble: 1 × 2
#>       a     b
#>   <int> <int>
#> 1     1     6
nth(df, 4)
#> # A tibble: 1 × 2
#>       a     b
#>   <int> <int>
#> 1     4     9