rowwise() allows you to compute on a data frame a row-at-a-time.
This is most useful when a vectorised function doesn't exist.
Most dplyr verbs preserve row-wise grouping. The exception is summarise(),
which return a grouped_df. You can explicitly ungroup with ungroup()
or as_tibble(), or convert to a grouped_df with group_by().
Arguments
- data
Input data frame.
- ...
<
tidy-select> Variables to be preserved when callingsummarise(). This is typically a set of variables whose combination uniquely identify each row.NB: unlike
group_by()you can not create new variables here but instead you can select multiple variables with (e.g.)everything().
Value
A row-wise data frame with class rowwise_df. Note that a
rowwise_df is implicitly grouped by row, but is not a grouped_df.
List-columns
Because a rowwise has exactly one row per group it offers a small
convenience for working with list-columns. Normally, summarise() and
mutate() extract a groups worth of data with [. But when you index
a list in this way, you get back another list. When you're working with
a rowwise tibble, then dplyr will use [[ instead of [ to make your
life a little easier.
See also
nest_by() for a convenient way of creating rowwise data frames
with nested data.
Examples
df <- tibble(x = runif(6), y = runif(6), z = runif(6))
# Compute the mean of x, y, z in each row
df |> rowwise() |> mutate(m = mean(c(x, y, z)))
#> # A tibble: 6 × 4
#> # Rowwise:
#> x y z m
#> <dbl> <dbl> <dbl> <dbl>
#> 1 0.915 0.507 0.807 0.743
#> 2 0.831 0.181 0.553 0.522
#> 3 0.0458 0.760 0.646 0.484
#> 4 0.456 0.201 0.312 0.323
#> 5 0.265 0.259 0.622 0.382
#> 6 0.305 0.992 0.330 0.542
# use c_across() to more easily select many variables
df |> rowwise() |> mutate(m = mean(c_across(x:z)))
#> # A tibble: 6 × 4
#> # Rowwise:
#> x y z m
#> <dbl> <dbl> <dbl> <dbl>
#> 1 0.915 0.507 0.807 0.743
#> 2 0.831 0.181 0.553 0.522
#> 3 0.0458 0.760 0.646 0.484
#> 4 0.456 0.201 0.312 0.323
#> 5 0.265 0.259 0.622 0.382
#> 6 0.305 0.992 0.330 0.542
# Compute the minimum of x and y in each row
df |> rowwise() |> mutate(m = min(c(x, y, z)))
#> # A tibble: 6 × 4
#> # Rowwise:
#> x y z m
#> <dbl> <dbl> <dbl> <dbl>
#> 1 0.915 0.507 0.807 0.507
#> 2 0.831 0.181 0.553 0.181
#> 3 0.0458 0.760 0.646 0.0458
#> 4 0.456 0.201 0.312 0.201
#> 5 0.265 0.259 0.622 0.259
#> 6 0.305 0.992 0.330 0.305
# In this case you can use an existing vectorised function:
df |> mutate(m = pmin(x, y, z))
#> # A tibble: 6 × 4
#> x y z m
#> <dbl> <dbl> <dbl> <dbl>
#> 1 0.915 0.507 0.807 0.507
#> 2 0.831 0.181 0.553 0.181
#> 3 0.0458 0.760 0.646 0.0458
#> 4 0.456 0.201 0.312 0.201
#> 5 0.265 0.259 0.622 0.259
#> 6 0.305 0.992 0.330 0.305
# Where these functions exist they'll be much faster than rowwise
# so be on the lookout for them.
# rowwise() is also useful when doing simulations
params <- tribble(
~sim, ~n, ~mean, ~sd,
1, 1, 1, 1,
2, 2, 2, 4,
3, 3, -1, 2
)
# Here I supply variables to preserve after the computation
params |>
rowwise(sim) |>
reframe(z = rnorm(n, mean, sd))
#> # A tibble: 6 × 2
#> sim z
#> <dbl> <dbl>
#> 1 1 1.01
#> 2 2 1.85
#> 3 2 4.90
#> 4 3 -1.99
#> 5 3 -0.977
#> 6 3 -0.980
# If you want one row per simulation, put the results in a list()
params |>
rowwise(sim) |>
summarise(z = list(rnorm(n, mean, sd)), .groups = "keep")
#> # A tibble: 3 × 2
#> # Groups: sim [3]
#> sim z
#> <dbl> <list>
#> 1 1 <dbl [1]>
#> 2 2 <dbl [2]>
#> 3 3 <dbl [3]>
