rowwise()
allows you to compute on a data frame a row-at-a-time.
This is most useful when a vectorised function doesn't exist.
Most dplyr verbs preserve row-wise grouping. The exception is summarise()
,
which return a grouped_df. You can explicitly ungroup with ungroup()
or as_tibble()
, or convert to a grouped_df with group_by()
.
Arguments
- data
Input data frame.
- ...
<
tidy-select
> Variables to be preserved when callingsummarise()
. This is typically a set of variables whose combination uniquely identify each row.NB: unlike
group_by()
you can not create new variables here but instead you can select multiple variables with (e.g.)everything()
.
Value
A row-wise data frame with class rowwise_df
. Note that a
rowwise_df
is implicitly grouped by row, but is not a grouped_df
.
List-columns
Because a rowwise has exactly one row per group it offers a small
convenience for working with list-columns. Normally, summarise()
and
mutate()
extract a groups worth of data with [
. But when you index
a list in this way, you get back another list. When you're working with
a rowwise
tibble, then dplyr will use [[
instead of [
to make your
life a little easier.
See also
nest_by()
for a convenient way of creating rowwise data frames
with nested data.
Examples
df <- tibble(x = runif(6), y = runif(6), z = runif(6))
# Compute the mean of x, y, z in each row
df %>% rowwise() %>% mutate(m = mean(c(x, y, z)))
#> # A tibble: 6 × 4
#> # Rowwise:
#> x y z m
#> <dbl> <dbl> <dbl> <dbl>
#> 1 0.155 0.751 0.882 0.596
#> 2 0.763 0.149 0.283 0.398
#> 3 0.796 0.502 0.291 0.530
#> 4 0.268 0.00981 0.287 0.188
#> 5 0.707 0.493 0.568 0.589
#> 6 0.151 0.110 0.367 0.209
# use c_across() to more easily select many variables
df %>% rowwise() %>% mutate(m = mean(c_across(x:z)))
#> # A tibble: 6 × 4
#> # Rowwise:
#> x y z m
#> <dbl> <dbl> <dbl> <dbl>
#> 1 0.155 0.751 0.882 0.596
#> 2 0.763 0.149 0.283 0.398
#> 3 0.796 0.502 0.291 0.530
#> 4 0.268 0.00981 0.287 0.188
#> 5 0.707 0.493 0.568 0.589
#> 6 0.151 0.110 0.367 0.209
# Compute the minimum of x and y in each row
df %>% rowwise() %>% mutate(m = min(c(x, y, z)))
#> # A tibble: 6 × 4
#> # Rowwise:
#> x y z m
#> <dbl> <dbl> <dbl> <dbl>
#> 1 0.155 0.751 0.882 0.155
#> 2 0.763 0.149 0.283 0.149
#> 3 0.796 0.502 0.291 0.291
#> 4 0.268 0.00981 0.287 0.00981
#> 5 0.707 0.493 0.568 0.493
#> 6 0.151 0.110 0.367 0.110
# In this case you can use an existing vectorised function:
df %>% mutate(m = pmin(x, y, z))
#> # A tibble: 6 × 4
#> x y z m
#> <dbl> <dbl> <dbl> <dbl>
#> 1 0.155 0.751 0.882 0.155
#> 2 0.763 0.149 0.283 0.149
#> 3 0.796 0.502 0.291 0.291
#> 4 0.268 0.00981 0.287 0.00981
#> 5 0.707 0.493 0.568 0.493
#> 6 0.151 0.110 0.367 0.110
# Where these functions exist they'll be much faster than rowwise
# so be on the lookout for them.
# rowwise() is also useful when doing simulations
params <- tribble(
~sim, ~n, ~mean, ~sd,
1, 1, 1, 1,
2, 2, 2, 4,
3, 3, -1, 2
)
# Here I supply variables to preserve after the computation
params %>%
rowwise(sim) %>%
reframe(z = rnorm(n, mean, sd))
#> # A tibble: 6 × 2
#> sim z
#> <dbl> <dbl>
#> 1 1 0.436
#> 2 2 1.66
#> 3 2 4.76
#> 4 3 -3.10
#> 5 3 2.68
#> 6 3 -2.55
# If you want one row per simulation, put the results in a list()
params %>%
rowwise(sim) %>%
summarise(z = list(rnorm(n, mean, sd)), .groups = "keep")
#> # A tibble: 3 × 2
#> # Groups: sim [3]
#> sim z
#> <dbl> <list>
#> 1 1 <dbl [1]>
#> 2 2 <dbl [2]>
#> 3 3 <dbl [3]>